On Distributed Charging Control of PEVs with Power Network Constraints

Wann-Jiun Ma, Ufuk Topcu and Vijay Gupta

GLS 2013 on Smart Grid and the New Energy Economy

PEV Ecosystem

PEV Ecosystem

• Distributed charging of PEVs: capacity constraints, lack of communication infrastructure, privacy and security

• Many distributed algorithms (based on pricing) have been proposed for inducing favorable charging profiles

• Many distributed algorithms (based on pricing) have been proposed for inducing favorable charging profiles

• Favorable profiles form an equivalence class

• Many distributed algorithms (based on pricing) have been proposed for inducing favorable charging profiles

• Favorable profiles form an equivalence class

• Problem 1: How can we respect power network constraints?

• Many distributed algorithms (based on pricing) have been proposed for inducing favorable charging profiles

• Favorable profiles form an equivalence class

• Problem 1: How can we respect power network constraints?

• Problem 2: How can we implement these algorithms in the absence of communication and decision infrastructure to support multiple rounds of negotiations?

Basic Optimization Problem (From Gan et al, 2011)

Basic Optimization Problem (From Gan et al, 2011)

- Partition the planning horizon into T slots
- r_n(t): charging rate of EV-n in time slot t

Basic Optimization Problem (From Gan et al, 2011)

Partition the planning horizon into T slots
 r_n(t): charging rate of EV-n in time slot t

base load min $\sum_{n=1}^{T} \left(D(t) + \sum_{n=1}^{N} r_n(t) \right)^2$ rate s.t. $0 \leq r_n(t) \leq \bar{r}_n(t)$ constraint $\sum_{n=0}^{\infty} r_n(t) = R_n \qquad \begin{array}{c} \text{capacity} \\ \text{constraint} \end{array}$ over the variables $r_n(t)$ for t = 1, ..., T, n = 1, ..., N

Basic Algorithm (Gan et al, 2011)

Basic Algorithm (Gan et al, 2011)

Theorem: Charging profiles converge to a profile in the set of optimal charging profiles.

Basic Algorithm (Gan et al, 2011)

- **Theorem:** Charging profiles converge to a profile in the set of optimal charging profiles.
- Problem 1: How can we respect power network constraints?
- Problem 2: How can we implement these algorithms in the absence of communication and decision infrastructure to support multiple rounds of negotiations?

Basic Idea for Including Active Power Flow Constraints

Optimization problem

$$\min \sum_{t \in T} (D(t) + \sum_{i \in N} x_i(t))^2$$

subject to $0 \le x_i(t) \le \overline{x}_i(t), \quad t \in T, i \in N$
$$\sum_{t \in T} x_i(t) = R_i, \quad i \in N$$
$$Lx \le c$$

Basic Idea for Including Active Power Flow Constraints

Optimization problem

- Power flow constraints combine power flowing through various links and components
- All the terms in the constraint can be functions of time
- Assume that mapping temperature and life considerations to allowable capacity profiles has been done

Distributed Algorithms to Solve the Problem

- The algorithm from Gan et al needs to be augmented
- There needs to be another 'price' that charges for capacity constraint violations and is determined by negotiations with neighbors only
- We choose the method of alternating direction method of multipliers (ADMM) for setting this second price

Distributed Algorithms to Solve the Problem

- The algorithm from Gan et al needs to be augmented
- There needs to be another 'price' that charges for capacity constraint violations and is determined by negotiations with neighbors only
- We choose the method of alternating direction method of multipliers (ADMM) for setting this second price
- Based on the time scales at which these prices are updated, different algorithms can be designed

Distributed Algorithms to Solve the Problem

- The algorithm from Gan et al needs to be augmented
- There needs to be another 'price' that charges for capacity constraint violations and is determined by negotiations with neighbors only
- We choose the method of alternating direction method of multipliers (ADMM) for setting this second price
- Based on the time scales at which these prices are updated, different algorithms can be designed
- Hierarchical implementation is possible

Simulation Results

 Southern California Edison (SCE) 47 bus network with 100 PEVs at every load bus

Simulation Results

Simulation Results

The frequencies that PEVs communicate with the utility company

Reactive Power Flow Constraints

• Need to add constraints on reactive power flow

$$\begin{split} p_{j} &= P_{ij} - \overline{r_{ij}} l_{ij} - \sum_{k:(j,k) \in \mathbb{E}, k \in \mathbb{M}} P_{jk}, \quad i, j \in \mathbb{M}, (i, j) \in \mathbb{E}, \\ q_{j} &= Q_{ij} - P_{ij} \delta_{ij} - \sum_{k:(j,k) \in \mathbb{E}, k \in \mathbb{M}} Q_{jk}, \quad i, j \in \mathbb{M}, (i, j) \in \mathbb{E}, \\ v_{j} &= v_{i} - 2(\overline{r_{ij}} P_{ij} + P_{ij} Q_{ij}) + (\overline{r_{ij}}^{2} + P_{ij}^{2}) l_{ij}, \quad i, j \in \mathbb{M}, (i, j) \in \mathbb{E}, \\ l_{ij} &= \frac{P_{ij}^{2} + Q_{ij}^{2}}{v_{i}}, \quad i, j \in \mathbb{M}, (i, j) \in \mathbb{E}, \end{split}$$

Reactive Power Flow Constraints

• Need to add constraints on reactive power flow

$$\begin{split} p_{j} &= P_{ij} - \overline{r}_{ij} l_{ij} - \sum_{\substack{k:(j,k) \in \mathbf{E}, k \in \mathbf{M} \\ k:(j,k) \in \mathbf{E}, k \in \mathbf{M} \\ p_{jk} = Q_{ij} - P_{ij} \mathbf{b}_{ij} - \sum_{\substack{k:(j,k) \in \mathbf{E}, k \in \mathbf{M} \\ k:(j,k) \in \mathbf{E}, k \in \mathbf{M} \\ p_{jk} = V_{i} - 2(\overline{r}_{ij} P_{ij} + P_{ij} Q_{ij}) + (\overline{r}_{ij}^{2} + P_{ij}^{2} \mathbf{b}) l_{ij}, \quad i, j \in \mathbf{M} , (i, j) \in \mathbf{E}, \end{split}$$

$$\begin{split} v_{j} &= v_{i} - 2(\overline{r}_{ij} P_{ij} + P_{ij} Q_{ij}) + (\overline{r}_{ij}^{2} + P_{ij}^{2} \mathbf{b}) l_{ij}, \quad i, j \in \mathbf{M} , (i, j) \in \mathbf{E}, \end{split}$$

$$\begin{split} l_{ij} &= \frac{P_{ij}^{2} + Q_{ij}^{2}}{v_{i}}, \quad i, j \in \mathbf{M} , (i, j) \in \mathbf{E}, \end{split}$$

$$\begin{split} \text{breaks convexity} \end{split}$$

Two relaxations

• Replace current constraint by inequality

$$l_{ij} = \frac{P_{ij}^2 + Q_{ij}^2}{v_i} \Longrightarrow l_{ij} \le \frac{P_{ij}^2 + Q_{ij}^2}{v_i}$$

• Can show that this relaxation does not introduce conservatism in the result

- Also need a regularization term in the cost function
- Interpretation of considering energy loss due to flow in the lines, but we are no longer performing valley filling
- However, the problem is now convex and can be solved with similar distributed algorithms as before

Difficulties in Multiple Rounds of Negotiation

- The optimization based algorithms may have privacy and security concerns since functions of charging profiles for the entire night are transmitted
- For the utility company, price profiles may carry too much proprietary information (esp. if valley filling is replaced by a direct dollar value objective)
- Communication infrastructure may not be able to support such multiple rounds of negotiation
- Can we reduce the amount of communication and make variables transmitted less informative?
- We propose the online learning based approach from game theory of regret minimization

Regret Minimization

- Consider the game of rock-paper-scissors
- Mixed strategies? Model the opponent?

Regret Minimization

- Consider the game of rock-paper-scissors
- Mixed strategies? Model the opponent?
- Learning based approach:
- Every time we play, observe the payoff and the opponent's action
- Compute regret
- Update action for next game to minimize regret
- Iterate

• Generic result: the strategy converges such that average regret goes to zero. Also if both players use regret minimization, then the strategies converge to Nash equilibrium

- The players in our game are the PEVs and the utility company
- They choose a strategy of charging profiles and pricing functions and observe the payoff

- The players in our game are the PEVs and the utility company
- They choose a strategy of charging profiles and pricing functions and observe the payoff
- Payoff for PEVs is the price paid for charging

$$c_i^k = (\sum_{j=1}^N x_j^k + D^k)^T x_i^k$$

• Payoff for utility company is variance of total load

$$c_{u}^{k} = \sum_{t \in T} \left(\sum_{j=1}^{N} x_{j}^{k}(t) + D^{k}(t) \right)^{2}$$

- The players in our game are the PEVs and the utility company
- They choose a strategy of charging profiles and pricing functions and observe the payoff
- Payoff for PEVs is the price paid for charging

$$c_i^k = (\sum_{j=1}^N x_j^k + D^k)^T x_i^k$$

Payoff for utility company is variance of total load

$$c_{u}^{k} = \sum_{t \in T} \left(\sum_{i=1}^{N} x_{j}^{k}(t) + D^{k}(t) \right)^{2}$$

• Utility company can observe the total load and it transmits the price profile incurred in the morning

• Player choose action over next night to minimize regret (use gradient projection algorithm)

Use gradient projection to minimize both customer and utility company regret

$$x_i^{k+1} = \mathbf{Proj} \left(x_i^k - \eta_i^k \bigtriangledown c_i^k(x_i^k)
ight)$$
 Update only once at the end of the day

Simulation Example

Preliminary Analysis

κ

 $F \parallel$

VGI

• **Theorem**: Average regret converges to zero at least as fast as $Q(\sqrt{K})$

i.e. the regret is bounded by

$$R_i \leq \frac{||F||^2 \sqrt{K}}{2} + \left(\sqrt{K} - 1/2\right) || \bigtriangledown c_i ||^2$$

- : Total days
- : The bound of the feasible set
- : The bound of the gradient

Preliminary Analysis

• **Theorem**: Average regret converges to zero at least as fast as $O(\sqrt{K})$

i.e. the regret is bounded by

$$R_i \leq \frac{||F||^2 \sqrt{K}}{2} + \left(\sqrt{K} - 1/2\right) || \bigtriangledown c_i ||^2$$

K : Total days

F : The bound of the feasible set

 $\|\nabla \mathbf{G}\|$: The bound of the gradient

• **Theorem**: The average charging profiles and the pricing policy converge to a Nash equilibrium

i.e. the average charging profile $\bar{x}^K := 1/K\sum_{\tau=1}^K x^{\tau}$ satisfies

$$c_i(\bar{x}^K, x_{-i}^K) \le c_i(y_i^K, x_{-i}^K), \quad K \to \infty$$

• Communication requirements are decreased and security and privacy concerns are met better. Only the incurred price profile needs to be published.

Extensions

• Real-time pricing may not be available every day

• Customers use the same charging profiles for the entire month; pay electricity bills at the end of month and update their charging profiles for the next month

- Does past information (e.g., past base load, past charging profiles) help to minimize the regret?
- Minimizing the regret adaptively

Conclusions: Distributed PEV Charging

• Problem 1: How can we respect power network constraints?

• Problem 2: How can we implement these algorithms in the absence of communication and decision infrastructure to support multiple rounds of

