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PEV Ecosystem



PEV Ecosystem

• Distributed charging of PEVs: capacity constraints, lack of communication 

infrastructure, privacy and security

Today’s Talk
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Basic Algorithm (Gan et al, 2011)

Theorem: Charging profiles converge to a profile in the set of optimal charging 

profiles.

• Problem 1: How can we respect power network constraints?

• Problem 2: How can we implement these algorithms in the absence of 

communication and decision infrastructure to support multiple rounds of 

negotiations?
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• Optimization problem

 
mintT (D(t)iN xi (t))
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Lx  c
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mintT (D(t)iN xi (t))

2

 subject to 0  xi (t)  xi (t), t T ,i N

 tT xi(t) Ri, iN

Lx  c
Gan et al’s formulation

Active power flow 

constraints

• Power flow constraints combine power flowing through various links and 

components

• All the terms in the constraint can be functions of time

• Assume that mapping temperature and life considerations to allowable 

capacity profiles has been done



Distributed Algorithms to Solve the Problem 

• The algorithm from Gan et al needs to be augmented

• There needs to be another ‘price’ that charges for capacity constraint 

violations and is determined by negotiations with neighbors only

• We choose the method of alternating direction method of multipliers 

(ADMM) for setting this second price



Distributed Algorithms to Solve the Problem 

• The algorithm from Gan et al needs to be augmented

• There needs to be another ‘price’ that charges for capacity constraint 

violations and is determined by negotiations with neighbors only

• We choose the method of alternating direction method of multipliers 

(ADMM) for setting this second price

• Based on the time scales at which these prices are updated, different 

algorithms can be designed 



Distributed Algorithms to Solve the Problem 

• The algorithm from Gan et al needs to be augmented

• There needs to be another ‘price’ that charges for capacity constraint 

violations and is determined by negotiations with neighbors only

• We choose the method of alternating direction method of multipliers 

(ADMM) for setting this second price

• Based on the time scales at which these prices are updated, different 

algorithms can be designed 

• Hierarchical implementation is possible



Simulation Results

• Southern California Edison (SCE) 47 bus network with 100 PEVs at every 

load bus



Simulation Results



Simulation Results



Reactive Power Flow Constraints

• Need to add constraints on reactive power flow
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Two relaxations

• Replace current constraint by inequality

lij 
Pij

2 Qij

2

vi

 lij 
Pij

2 Qij

2

vi

• Can show that this relaxation does not introduce conservatism in the result

• Also need a regularization term in the cost function

• Interpretation of considering energy loss due to flow in the lines, but we are 

no longer performing valley filling

• However, the problem is now convex and can be solved with similar 

distributed algorithms as before



Difficulties in Multiple Rounds of Negotiation 

• The optimization based algorithms may have privacy and security concerns 

since functions of charging profiles for the entire night are transmitted

• For the utility company, price profiles may carry too much proprietary 

information (esp. if valley filling is replaced by a direct dollar value objective)

• Communication infrastructure may not be able to support such multiple 

rounds of negotiation

• Can we reduce the amount of communication and make variables 

transmitted less informative?

• We propose the online learning based approach from game theory of regret 

minimization
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Regret Minimization

• Consider the game of rock-paper-scissors

• Mixed strategies? Model the opponent?

• Learning based approach:

• Every time we play, observe the payoff and the opponent’s action

• Compute regret

• Update action for next game to minimize regret

• Iterate

• Generic result: the strategy converges such that average regret goes to 

zero. Also if both players use regret minimization, then the strategies 

converge to Nash equilibrium
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• Utility company can observe the total load and it transmits the price profile 

incurred in the morning

• Player choose action over next night to minimize regret (use gradient 

projection algorithm)
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Electricity Price

Use gradient projection to minimize both customer and utility company regret

Regret:

Update only once at the end of the 

day

Utility Company Cost:Customer Cost:

Regret Minimization for Distributed Charging
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: Index for different days

Unknown and Uncertain Base Load



Simulation Example
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• Theorem: Average regret converges to zero at least as fast as

i.e. the regret is bounded by

• Theorem: The average charging profiles and the pricing policy converge to 

a Nash equilibrium

i.e. the average charging profile                                           satisfies

• Communication requirements are decreased and security and privacy 

concerns are met better. Only the incurred price profile needs to be 

published.

Preliminary Analysis 

: Total days

: The bound of the feasible set

: The bound of the gradient



Extensions

• Real-time pricing may not be available every day

• Customers use the same charging profiles for the entire month; pay 

electricity bills at the end of month and update their charging profiles for the 

next month

• Does past information (e.g., past base load, past charging profiles) help to 

minimize the regret?

• Minimizing the regret adaptively

Jan 28th Feb 28th Mar 28th April 28th
. . .

Charging Profile #1 Charging Profile #2 Charging Profile #3

. . .

Example:

Pay the bill for Feb and update 

charging profile for March 
. . .. . .



Conclusions: Distributed PEV Charging

• Problem 1: How can we respect power network constraints?

• Problem 2: How can we implement these algorithms in the absence of 

communication and decision infrastructure to support multiple rounds of 

negotiations?


